Понимание и основные цели

С развитием энергетики, мы всё чаще сознаём об необходимости создания источника энергии способного в корне изменить тенденцию развития энергетики и привести её на качественно новый уровень. Ведь всем ясно, что полностью отказаться от ядерной энергетики и энергии углеводородного топлива невозможно. Если ли революционное направление, дающее нам потенциал ядерной энергии и способной заменить, или если хотите изменить, сегодняшнюю тенденцию.  Отвечу неоднозначно, что современные технологии добились революционного направления в этой области и я представляю вам "Токама́к"

Вы спросите меня, что это за "существо-Токама́к"? 
Токама́к (тороидальная камера с магнитными катушками) — тороидальная установка для магнитного удержания плазмы с целью достижения условий, необходимых для протекания управляемого термоядерного синтеза. Плазма в токамаке удерживается не стенками камеры, которые способны выдержать её температуру лишь до определенного предела, а специально создаваемым магнитным полем. По сравнению с другими установками, использующими магнитное поле для удержания плазмы, особенностью токамака является использование электрического тока, протекающего через плазму для создания полоидального поля, необходимого для сжатия, разогрева, и удержания равновесия плазмы. Этим он, в частности, отличается от стелларатора, являющегося одной из альтернативных схем удержания, в котором и тороидальное, и полоидальное поля создаются с помощью магнитных катушек. Но так как нить плазмы являет собой пример нестабильного равновесия, проект токамак пока не реализован и находится на стадии крайне дорогостоящих экспериментов по усложнению установки.

Устройство
Токамак представляет собой тороидальную вакуумную камеру, на которую намотаны катушки для создания тороидального магнитного поля. Из вакуумной камеры сначала откачивают воздух, а затем заполняют её смесью дейтерия и трития. Затем с помощью индуктора в камере создают вихревое электрическое поле. Индуктор представляет собой первичную обмотку большого трансформатора, в котором камера токамака является вторичной обмоткой. Электрическое поле вызывает протекание тока и зажигание в камере плазмы.
Протекающий через плазму ток выполняет две задачи:
  • нагревает плазму так же, как нагревал бы любой другой проводник (омический нагрев);
  • создает вокруг себя магнитное поле. Это магнитное поле называется полоидальным (то есть направленное вдоль линий, проходящих через полюсы сферической системы координат).
Магнитное поле сжимает протекающий через плазму ток. В результате образуется конфигурация, в которой винтовые магнитные силовые линии «обвивают» плазменный шнур. При этом шаг при вращении в тороидальном направлении не совпадает с шагом в полоидальном направлении. Магнитные линии оказываются незамкнутыми, они бесконечно много раз закручиваются вокруг тора, образуя так называемые «магнитные поверхности» тороидальной формы.
Наличие полоидального поля необходимо для стабильного удержания плазмы в такой системе. Так как оно создается за счёт увеличения тока в индукторе, а он не может быть бесконечным, время стабильного существования плазмы в классическом токамаке ограничено. Для преодоления этого ограничения разработаны дополнительные способы поддержания тока. Для этого может быть использована инжекция в плазму ускоренных нейтральных атомов дейтерия или трития или микроволновое излучение.
Кроме тороидальных катушек для управления плазменным шнуром необходимы дополнительные катушки полоидального поля. Они представляют собой кольцевые витки вокруг вертикальной оси камеры токамака.
Одного только нагрева за счет протекания тока недостаточно для нагрева плазмы до температуры, необходимой для осуществления термоядерной реакции. Для дополнительного нагрева используется микроволновое излучение на так называемых резонансных частотах (например, совпадающих с циклотронной частотой либо электронов, либо ионов) или инжекция быстрых нейтральных атомов.

В отличие от ядерных реакторов период полураспада отработанного топлива низок и вероятность радиационного заражения сведена  к минимуму.

Опытный образец Токама́ка